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THE INTEGRATEDCOMFTON CROSS SECTION

AND ITS USE IN A MONTE CARLO SCBEME

by

Gary S. Fraley

ABSTRACT

The differentialCompton cross section is integrated
over a relativisticMaxwellian electron distribution. The
result, the cross section per final energy and angle of
scatter, is then used in a Monte Carlo scheme that does not
involve the use of large tables.

I. INTRODUCTION

The Compton scatteringof a photon off an elec-

tron distributionmay be handled by integratingthe

cross section*over the distribution, and then by

using the integratedcross section alone without

referring again to the elementarycross section.

For a Maxwel.liandistribution,the differential

cross section will depend upon the initial photon

energy (ko), the final energy (k), the angle of

scatter (G), and the temperature (T).

where n(~) is the normalized

and

&

ak~

electron distribution,

is the cross section for an electron with velocity

F. Polarizationeffects are ignored, and the cross

section is summed over polarizations. Because the

cross section is independentof the

of scatter,

*
Cross section is the reaction rate

azimuthal angle

per unit elec-
tron and photon and includes a factor involvitg
relative velocity.

In a Monte Carlo scheme that picks a rew energy

and direction after a scattering,the variables f

and g are found for vhich

3%=(i&J(k,,c:s’))

is a constant.. For example,

COS8

f* .
1 d co+ &
-1

and

k

The

and

ing

, & f*(1) ,

g-k.

J
h

dk~,f = f*/f*(l), g = EY/@(so) .

0
(2)

variables f and g are equated to random numbers,

the physical variables are obtained by invert-

these functions.

k = k(g,ko, T) , COSe = COS~ (f,g,ko,T) .

Because the inversion must be done numerically,

k and coa are found by interpolationin tables.

One table is four-dimensional. Because 50)000 is

about the largest practical table, the average

number of entries per variable is about 15. If the

1



entries are equi-spacedin the variables, accuracy

in some regionfimay not be good. If the entries

are not equi-spaced,searching for entries and using

the more compl.lcatedinterpolationformulae will

increase the time epent for interpolation. In any

case, interpolationwill not be especially fast

because it involves 16 entries in a four-dimensional

table.

Another method is to pick k snd cos43directly

by random numbers, and then compare

& /(&) ‘“

to a third random number. If the ratio is greater

than the random number, the reaction goes; if not,

the procedure is repeated until the ratio is greater.

This is not efficientbecause the ratto is gener-

aQf small.

A third method is to develop analyticalapprox-

imations to f and g; fA and gA, which should be

easily inverted. This method is similar to the

second, but the ratio

is compared to the third random number. To the

extent that the approximationsare good, the ratio

should usualJy be close to 1, and k and EIwill gen-

erally come from the first try. This scheme re-

quires an analyticalformula for the cross section.

The integrationin Eq. (1) must be done analyti-

cally (it has been done numerically by Stone and

Nelaonl), or at least a sufficientlyaccurate

approxi~tion to the integralmust be developed.

What is usually the dominant term can be integrated

analytically, and the other terms can be approxi-

mated fairly easily. The integral is used by the

third method in a scheme that may be somewhat

faster than interpolation,and which &es not

require the large 8torage space.

Variables include

T=

7=

ee=

oe=

ko=

k=

a=

k2=

e=

c-=

c+=

temperature

relativisticelectron energy

electron polar angle

electron azimuthal angle

initial photon energy

final photon enera

ko- k

ko+ k

&le of scatter (O for forward scattering)

1-CO*

l+COSO

The

kL=~a2 + 2kkoC- .

electronmass and the speed of light are taken

as unity. The polar direction of the coordinate

system is in the direction ofko (Pig. 1). The

direction of k is (0,,2= O). Unprimed quantities

refer to the center-of-ma8s8ystem of the distribu-

tion; primed quantitiesrefer to the rest system of

the electron.

In Eq. (1), we write

(4)

where aa’/aklb’ is the cro8s section in the rest

system of the electron; and aa~a’, etc., are the

appropriate transformationfactors to the unprimed

system. The cross section in the rest system of

the electron is given by the Klein-Nishinaformula.
2

(
k.‘

X6 k’-

)

.
l+ko’ (C-)’

The cross-sectiontransformationcan be deter-

mined by noting that da nenp (where ne and np arc

electron and photon densities) is an invariant,

II. THE INTEGRATEDCROSS SECTION being the ratio of twm invariant, the number of

In ??q.(1) we use the (nondegenerate)relati- reactions in an element of space-time,and tine

vistic Maxwelll.andistribution

Y

e-+2 7 f3dydco@e doe .

m = k TIK.$)

(3)

volume of that element.

(6)



A

KO(8=O)

i?(8, #=o)
A

Fig. 1. The electronsolid angle.

Then

% _ ‘e’np’
w ep “n n

or

Because ne and n
P

are the time-likecomponentsof

4-vectors, (n,n$),they transformas

n= yn’ (1+~.;’) ,

n’ = 7!1(1 - F.?) . (7)

For tne photons IvI = Iv/l = 1, and for the elec-

trons?’ = O. Then

~=1-~cow3e=Dl. (8)

If a coordinate system is temporarilytaken in

tne direction of the electron velocity,

~. li~’ C3cosok’ 1

al ~acO+k ‘—
7%22

where

(
D2 = 1 - p Coarjecoso + sin8

is determinedby using the usual

(9)

since CO*O
)

e (lo)

angle-transforma-

tion formula andby noting that ~~’~~= 1s

because it only involves coordinatesperpendicular

to the velocity of.transformation.

The photon energies, as the time-tie compo-

nents of k-vectors,~ = (k~~), transfo~ as

koa =

The delta

7koD1 and k~ = 7kD
2“

function requires that

( I.1)

k.1 k.~
k~ = s . (X2)

1 + ko’(C-)l 1 +k’ko’(C-)’/k’

Because k’ko’(C-)’ isaninvarient ( =&’. &’), in

unprimed quantitieswe have

koD1
k= k“

(13)

D2 + ; c-

We have dk~~e proportional to - sin,9e,which shows

that in the half section of solid angle, O G ,>ec n,

there is at most one,,e (for givenee) where the

delta function has zero argument. Figure 2 shows

lines of constant k over half of the total solid

angle.

When the delta function integrationover ,,eis

done, we have (including a factor of 2 for the two

sections of solid angle)

r2

J“

7
-T2

d7dcosee e 7 p
& = kT°K2(~)

From Eq. (13),

From

-koD1p si@ sint)esi~9e

~=

( )
D2+~C- 2

Y

k2
. -~ si@ Sin8e six4~e~ .

Eq. (12),

s&,.2($-+)- ($-+)2 .

3
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FLU. 2. Lines of constant final energy (k) in

Then Eq. (15) is

(16)

The term 19 sine SiXX3eSiXW-JelmW~ by Eq. (13)) be

written as a quadratic in D1 or D2.

the electron solid angle.

In unprimed quantities,

where
au

d 2.
a2D2 + b2D2 + C2 ‘

(17)

aka3
r2 al

= - k42/k2 ,

J

--
: P

m

dy dcosee e
‘lhTT& 1P Sir@ Sir@e %Ye]

bl= 2 F [~+ (1 :;)(>- CO*)]

1
cl=- >‘[ 1C++ C-(7 +ko)2 ,

72D2%ko
2

2++—
Dlko27( k ‘2 1 ‘1 2-—

p q+xq 7 D2kko
o

2
++2

7 %JJ2kko2 1 0 )

We now write

1 7—.— - 7

%D2 kC-D2 koC-Dl

‘2 ‘o
koC-

—=T.F , and
‘1

‘1 k kC-—=%+7%
‘2

We also have

d D1
k dD2 .dcos(je= ~= —kojll

‘k
(15) az=-~’

[

k
b2 = *C- c++$-

k ‘O =OsO
cosO-y+y

1
>

0

end

c-
C2=-7 [ 1C+ + C- (y-k)2 .

. The Integrals over D1(D2) are then of the type

! dx a, c< 0, b> 0, a= O, 1, 2 .
~aJ=

The results usually Involve Inverse sines. How-

ever, when the quadratic is O, the argument of the



.

.

inverse 8ine is always ~ 1. In our caae, the qud-

ratic Is alwaya O at the limits of integration

because it has a factor sl@e s~e (Fig. 2). The

result i.e

[

-b
—a =2.
2C~

Equation (1.6)reduces to

()+k@ +++
‘f2z ‘q

+ 1

[‘2

ko2 k~ T2$

i%($-j)f++$
7+koa+kkoC- 1

7+ka-kkoC- 1] 0 (18)

where

T1-C++C-(y+ko)2 ,

and

T2=C++C-’(7-k)2.

The vertical line in Fig. 3 shown schemati-

cally the range of final energies (k) for a given

electron ener~ (7). The horizontal Line shows the

rWe of energies to be integratedover for a given

k. The lower limit iB that electron energy for

which k is the m.inlmumor maximum final photon

energy. The extreme values ofk occur at

Coqpe - ~ 1. We replace co~e by~ 1 in Eq. (13),

differentiatewith respect to ee, and aet the

derivative equal to O. The resulting equation in-

volves ko, k, C-, end 7. By solving for 7, we

obtain the lower limit of integration

[(7m” O*5 ‘a ‘kk 11+2/( kkoc-))* . (u)

(The (:) factor has been squared out.)

The first term in Eq. (18) involves 7 only in

the exponentialand can be done exp~cltly. The

other terms probably cannot be done explicitly.

~ey are of the type

.
‘m

(20)

For temperaturessmall compared to 500 keV, I can

be approximatedbypulJAng f(7) from the integral.

Abetter approximationis to change to the variable
‘(7 - ym)/T ad then & Gauesi~ qUadt’atureS.s-e

Second-orderquadrature give

- 7=

ImO.5e
[

~ f(7m+o.237T)

1+f (7m+ 1.554 T) . (21)

This gives an accuracy of 1$ or better to tempera-

ture up to 200 keV and ~ to teqeraturea up ta

~ keV.

K

Fig. 3.

0

Range of final energies as function of
electron veticity.
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The

The Klein-Nishinaformula has a factor

(ko’ ~,
~+p- )sin2gt

o

(( k’
= 2+~+ +.2

)
- ~in28,

)

.
0

exact term (that integrated exp~citly) comes

from the 2.

Because

k.1
~ = l+ko’ (C-)’,#-r= l-k’ (c-)’ ,

0

and

11 —= (c-)’ ,
F - ko’

then

k’ ~o’
~+~- 2 = (C-’) (ko’ - k’)

()

= ktkol (C-)t 1 1
p -~ =kkoc- (c-)’ .

0

(l&oc- is invariant.)

The cross section is then

[
l+o.5kko c- ((c-)’) - o.5(sin213’) 1

(22)

, (23)

where ( ) indicates the appropriateaverage over

the electron distribution. Rx fairly small T and

Ym> ((C-)’)SC-, and

[1+0.5 (kko (02 - sin%)].

This gives better then 10$ accuracy for

T< 25 keV and ym< 1.3.

6

(24)

An approximationintermediatein accuracy

to the tm cases above is to approximate

go.

1

[

e-+
T f(y) byf(ym) .

7m

the limit of low temperature.

that the integrationover solid

It is exact in

Figure 2 shows

angle degeneratesto integrationover a point at

Y = Yn. This approximationthen amounts to re-

placing

((C-)’) by the (C-)’ of that point (denoted by Cm).

((C-)’) comes from the terms

()kfi +-+ in Eq. (1.8).

T2~ T1~

We have

where

1
T1~ = [( )1

E’+c- (ym+ko)2-1 * ,

and

1

[(
1

5=
‘2 )]

2+C- (7m-k)2-l E “

The formula is complicatedby square rmts inside

of square roots, due to ym. These meybe elimi-

nated by the algebrtic identity

(J==W7=)(25,
if (a2 - b) is a perfect square. It is nearly

always a perfect square for the functions associ-

ated with Compton scattering. We obtein



~

( )T12 = 0.5fi- k2~m+k4 ,

and

(J
Tj= 0.5~ k2

)
I + 2/~c- - kb .

(
~2 + 2kko c-

cm=2 z 1.

‘2
+ k% 02 c-c+

Two things are noted: Cm(C- = 2) is 2 for all

cases; if terms of Q(k.ko)are ignOred~ Cm is line~

in C-. The cross-sectionapproximationis

~2 - Ym
au= o * ,~,.

(26)

[
1- Cm(l - 0.5 kkoc-) +

Tne dominant factor in

usually Ym. Figure 4 shows

function of COSO. Unless k

ity for forward scattering.

10.5 CM2 . (27)

the cross section is

yn,for fixed k, as a

= ko, ym goes to infin-

For all k ~ ko, tne

cross section for forward scatteringis O,but it

iS infinite for k = ko. ym has a minimum at

Ic-.+; .
0

Fork> kof(l - 2ko) or k < ko/(l + 2ko), this fin-

imum is at an unphysical angle, and the real mini-

mun is at C- = 2. Figure 5 shows the cross sections

Y

c ,0 ~.

(a) K=KO

K.
(b) — <K <K.

lt2 K.

K.
(c)— >K>KO

I-2Ko

%(d) KC—
I+2K0

Jo) K>* I-2Ko-.-_4

@=0 u =r

Fig. 4. Minimum electron energy as function of
scatteringangle (for constant k).

l\\
(d) 50 so
(0) 10 10

15 (f) 10 50
(9) 50 10
(h) 60 so

K

z
50
10
m
16
61
16
61

0
O.a 0.4 0 -0.4 -0.8

Fig. 5.

for some

Cos 8

Differentialcross sections.

typical cases in units of milli.barnsper

keV per steradism.

III. THE MONTE CARIQ SCA’M!ERINGSCHEME

The approximationsto the indefiniteintegrals

(discussed in Sec. I) should be chosen to minimize

the amount of calculation. This will depend upon

the complexityof the formulae and the number of

times the process must be repeated to get a scatter-

ing. The integrationof the exact term found in

Sec. II fits these conditions fairly well. Tine

third random number is compared to

[1- 0.5(sin2G’) +0.5 k.koC- ((C-)’)]

.(26)

[1- 0.5 (sin2e’) + 0.5kko C- ((C-)’)]max

For energies

about

small compared to 500 keV, tnis is

1 - 0.5 (sin20’) .

Because the average value Of (Sin2~’)= $> the num-

ber of times the process must be repeated is

1+$+++’ ””=1”5.

7



‘Themaximum is unboundedbecause k may be arbitrar-

ily large. However, the maximum may be replaced by

[
1 + 2 kako1,ka=ko+aT. (29)

‘l’hen

ym(k>ka)>l+CZT .

The replacementunderestimatesthe cross section

for k> ka for backward scattering,but because the

cross section is small by some exponentialfactor,

it is not important.

Where the exact term is denoted by Ul,

aul kk -6
==<’ . (30)

A constant factor in front, as well as the sub-

script on ym has been dropped. The inversionof

Eq. (1.g)gives

(
c- - 72 +ya-

1 :%a2 )
/kk

o’ (31)

where

a2 .

and

r72-1s

The ~ refers to tm different branches. The range

of the branches over k and y is shown in Fig. 6.

The minus branch exists above the curve (1) in the

figure. The curve is definedby putting C- = 2

inta Eq. (19). Eoth branches exist between the

curve end the straight line 7 = 1 and 7 = 1 - ko+ k.

The plus branch exists only for

I /1 + 2k02(1-2ko), ko<~
1s7<71=

a
1

, koz ~ .

The values ofk on curve (1) in Fig. 6 are

I

7

Fig. 6. Range of the independentvariables

km= k. (272 +2yko - 1- 2 (7 +ko) ~2)

1 + k7ko + kko2

kp=ko(272+27ko-l+2 (7+ko)~)

1 + byko + kko2 .

with the use of identity (25)

and

K+

7 and k.

(32)

(33)

Then, when the independentvariable is changed from

c- to y,

(34)

A value of 7 is found by picking a random number Pl,

and SOlVilU3

(35)

where bu#7 is the integral of Eq. (34) over all

relevant k. The branches exe sununedover (Table 1).

.



F2=$-
2

[ 1 ‘1(1+2ko)5 =-*-T”

The equation now to be solved is

x

/

2
-w

p&’5=F ~
3
0

where

X2= (7-1)/T,

2
-x

dw-Fke ,

WheII 7 iS knOwn, k

random number P2 to the

of &J1/3k3y. This iS

is picked by equating a

indefiniteintegral over k

3~F2T2,

~F2$x+F1T$ .

error function,which my be

2
F4=F2~r+

(x)I all =la2!=l.

The integral is

tabulated. The

part in 103 for

keV. Where

the

better than ohe

than about 100

following gives x

temperatureslessThe range of k may be divided

For each group, Table I gives

properties.

The value of &rl/by is

into three groups.

al$ a2’
and other

Gl= F1 T/2,

?ksl kk02 (2y2+27ko - 1) y
e- T

F=F
.

1 + byko + 4k02
‘2= ‘sl +‘N ‘G, “ +‘1)‘a(37)

where

‘1
This cannot be integratedexplicitly,but if some

of the factors are expanded about 7 = 1, the

approximationcan be integratedin terms of the

error function.

3U1 au2

F“F =

The value of xl may be obtained from a

of the inverse of the error function.

obtained from X2 by one applicationof

m~thod.

A distributionof 7 corresponding

may be obtained by comparing a random numberP& ~

tabulatim

Then x is

Itewton’s

to &J1/a7

(272 + 2yko - 1)
o

1 + 47ko + kko2 ~1

(1 + 2ko),

( 2,

.
1+F1(7-1) +F2 (7. 1)

where

(F1 = 3.’75 + 5ko +3k02)/(l+2ko)2 ,

(40)
and

9



If Pk i8 greater than the ratio, a new value of P1

is picked. The ratio must a.1.way8be less than 1.

This will be true if k. c O.1.11. Ibr k. > O.lJl,

it is true if F2 is replacedby O. For 7< 2, the

ratio is always greater than

I
1/~ +0.035(7-1)] , ko<O.lU

1/ [1+0.13 (7-1) 1 ) ko> O.11.1 .

If Pk is less then this simpler expression (and it

almost alwws is), the calculationof the more com-

plicated term may be avoided.

When 7 ia known, one picks a random number P2

and calculates

A=2ko
( )
p2(~+kp) -km , (41)

which is essentiallyequivalentto

k

/

aal

=*”
k.

There are three possibilitiesfor A. After some

algebra, which is not included here, one has

(1) A>Y-1. Then k is on the positive branch.

Let

A1=-A+2kk
OP’

and

~=A1+7 .

dThenk=7+ko-y~+Cz2 %2-1,

end

c-=(7- l+A1)/kko .

Awill notbe greater than (7 - 1) if the positive

branch does not exist at that value of 7.

(2) 0sA<7-1.

k=k o
-A7+’F’

end

C- = A/kko .

(3) A<o,

dk=k +A7-a2 A2 -2A,
o

C- = -A/kko“

Then a random number P3 is compared to

[
1-

1/
0.5 (ain2 e’) +0.5kkoC- ((C-)’)

(42)

The calculationof the ratio in Eq. (42) may be

rather lengthy, therefore it is avoided if possible.

IfP3 is less then 0.5/[1 + 2kakol, it is less than

the ratio in Eq. (42), end no ftrther calculation

is required. Otherwise, we calculate

[
A= 1- 0.5 sin2 9 +0.5kko(C-)

21/[’ + ‘%%1-
It was empiricallyfound that expression (42)

is greater then

AxMinimm[{~,

and less than

[~ 55T
1+8. TA X Maximum ~ ).

If P3 is less than Eq. (43),

it is greater then Eq. (44),

must be started over. If P.

1.35 - 10.397 , (43)

10.51 + 0.537 . (44)

the reaction goes. If

the entire procedure

is between Eqs. (43)

and (44), it must be compared to en acceptably

accurate approximationto Eq. (42), for example,

fromEq. (21).

If care is taken to predefine all factors

occurring more then once, somwhat more then 100

operations (additions,division, etc.) are required

each time through the procedure. An exponential

end two square roots are also required. Also, one

usually must go through the procedure about.1-1/2

times to get a scattering.

10



Iv THE TOTAL CROSS SECTION AND EXPECTATIONENERGY
IOss

The total cross section is needed to determine

the pcsition where the photon scatters. At the

point of scatteringone my deposit in the material

energy proportionalto (k. - k). Depending upon

the temperatureand initial energy, this xnethodnmy

require a large number of scattering for the ener-

gy deposition to settle down to its expectation

value. One scheme, which has been used to reduce

the fluctuationin energy deposition,is to deposit

the expectationenergy loss, (k. - k), at each

scattering. lloergyis then conserved only statis-

tically.

The total cross section is

For any uT’(ko’), Eq. (k5) maybe reduced to a one-

dimensional integral by changing the variable of

integrationfrom x to k 8 and then by inverting the
*O

order of integration.

. .

ako’

x
= - fjyk .

0

Then Eq. (4!5)is

1 Yko(l- P)

.dko’ko’uT’(ko’) (48)

“Tamp-’’:”)’-”)“;‘k:)“
After the order of integration is inverted,

m

(45)

The cross section should include a factor (1 + ~),

where ~(k,~) is the number of photons per final

state, but this is neglected.

The expectationenergy loss is

‘w?+
=*& [$ (7,J7=)2

Y-l

(k. - k)=ko-
1

()
oT2T&

(46)

-1

[k (,t~)].
‘T OThe cross section in the rest system of the elec-

tron depends upon the photon energy in that system,
Let

ko’= koy (1+X) , A= 1/(1 + bkoy + 4k02) ,

[
Al=log l+2ko

(
,+~ ,)1It is obtained by integratingEq. (5) over the so-

lid angle. and

1UT’ (ko’) =nro2 log (l+2ko’)
[

~=log l+2k
o

(, -m)].
.

.

*-
The idea for the change of variable end inversion
came from a m.emrandum by the MathematicalApplic-
ations Group, Inc., White Plains, N.Y. However,
the formula in the memorandum is incorrect due to
an error in the Coppler shift and the cross-
section transformation.I‘(l+ io’)2 .

(47)

u

—..



andThen

g (ko’) =
I

““”O’ “ c“~’ & “

After the change of variable from x ti ko’ and the

inversion of order of integration,

+2—

) 1

+~+A22(72-l)+2A7(7 +ko) .
ko3 k. “=? Jk”’:% ’+$)/T

Y

(x)

{[ 1
k’

f (ko’) - g (ko’) + (7+T) +g(ko’)
o .}

The integral in Eq. (~) (denotedby I) can be

treated in the same way in a slightlymore comp~-

cated manner. The differential.cross section de-

pends upon both ko’ and the angle of scatter.Also,
.

k = yk’
[
1 + p (coSe’ Cos ee’ + sime’ Sire’

{([ (f k. 71 WI)]Cos (~’ - {ge ‘)] , (51)

where

x-
cosoe’ = ~ - ;X

by the usual angle transformationformula.

Integrationover ~’ multiplies the first two
(53)+

Fbr

the last one.

- ~X) f (ko’)

terms of k by 2n and cancels

ComptOn scattering,

r2

[
f(ko’) = ~ ++ 1

2 1
l+2kor-~-3(1+m, )3

o

[ 1]+ log 1 + 2kot

ko’2

+i3(x-P)dko’)} , (2)
(54)

where

f (ko’) =
/

d c“~’ “ *

.

12



and first few terms are

.

.

r2

[

g(ko’)=~ -~+~-
k.

3 (l+k2k ‘
o

+

1 + 1

3 (l+2ko’)2 3 (l+2ko’)3

[ 1]log(=+=o’) 3+$-+ “
o 0

Then

I=”$p;q-~+F
4
~A(y+2ko)--- ~ A2 (7 + 4ko + 4k02y)

+ A3
[

~ Y + 6ko + L2 ko27 + 8 ko3(272 - 1)]

[ 1

+:( A1+~) ~(2Y2 -l)+&-+

o 0
0

{
+(7+T) .%

o

+ $ (272 -1+

+ 6k07 + u ko2

.++ $ A (272 - 1 + 2k07)

o

4koy + 4k02) -$ A3 (272 - 1

+ 8 ko37) + : (Al + ~)

(& )fr~+w%! $=
o 0

( 55)

These have been integratednumerically. Table II

gives results up to about 200 keV. The upper entry

is UT in terms of the Thomson cross section,

$n ro2, and the lower entry is (k. - k)/ko.

For small values of ko, UT’, f(ko’), and

g(ko’) can be expanded in a power series. The

With these approximations,

I= (+ f) 2’TK4+~o{l+l!+ + l+,.

- k.
\

(36T+m4T3+x(3+m #)) ,

where

(57

Higher-orderterms have much larger coefficients,

so the series is of little use except for low ener-

gies. Better approximationsmay be obtained by

expanding the integrand (with respect to 7) about

y=l. For low energies and temperature,

(k. - k)/ko=-4T+k .
0

(58)

Depositionof the expectation ener~ loss at

the point of scatteringmay be expanded to deposi-

tion of the expectation108s along the path of the

particle (up to a certain optical depth). Each

Monte Carlo particle which represents a large num-

ber of physical particles, does two things; (1) it

produces a secondary distributionof particles, and

(2) it deposits energy along the line of flight.

Although these are physically connected, they m~

be formally dissociated. Because each additional

photon necessitates extra work, the secondary dis-

tribution is representedby (usually) one photon

chosen in an entirely stochasticmanner. For each

13



TABxE II

SECTIONAND AVERAGEENERGYIb)S8

k
-Q

o

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

cmN CRoss

~

0.0 0.04 0.08 0. 2—— .

1.000 1. Ocx) 1.000
0 -0.1765 -0.3875 -;:F55

0.9275 0.9146 0.9080
0.367s .::g&% -0.2867 -0.4836

0.8S76 0.8574 0.8471 0.8370
o.6813i -0.62351 -0.2099 -0.3741

0.8171 0.8046 0.7923 0.7802
0.95271 -O.2024~ -0.1490 -0.2903

0.7741 0.7602 0.7466 0.7335
O.llgl 0.153fl -0.9897i -0.2234

0.7369 0.7221 0.7079 0.6942
0.1402 o.4604~ -o.$fl -0.I.683

0.7044 0.6892 0.6746 0.6606
0.1591 0.72&~ -0.2095i -0.1219

0.67% 0.6603- 0.6455 o.631k
0.1761 0.96571 -O.1O4OY -0.81.951

0.6503 0.6347 0.6199 0.6057
0.3917 0.n78 O.yxm -0.471X

0.6274 0.6118 0.5970 0.5830-
0.2059 0.1370 o.6275~ -0.1.6371

0.6067 0.S12 0.5765
0.2191 0.1% 0.8498~ i:=

(o.y578i z 0.5678 x 10-1)

0.I.6

1.000
-0.9223

0.9013
-0.7037

0.8270
-0.5542

0.7684
-0.4435

0.7208
-0.3572

0.6810
-0.2874

0.6471
-O.2W4

0.6179
-0.1801

0.5923
-0.1374

0.5696
-0.1000

-: :2:3n

existing photon, the extra work of calculating the

energy loss in each zone is small.

Up to m optical depth, Sl, the expectation

loss is deposited in each zone; beyond S1 the ex-

pectation loss for a particle of reduced weight
e- % is deposited at a point chosen stochastical.ly.

We calculate the variance in energy deposition,

find the minimum variance, and compare tn.isto the

more conventionalcase, s = o.

Consider a zone ofo~tical depth As (Ascc1)

centered at the origin in homogeneousmaterial.

The number of particles originatingat s in the di-

rection of the zone is

dn.nods . (59)

For O s s c S1, the number of particles

depositing energy is

dne=dn , (60)

0.20

1.000
-1.249

0.8947
-0.9466

0.8171
-0.7495

0.7570
-0.6080

0.7085
-0. WOO

0.6683
-0.4139

0.6343
-0.3432

0.6051
-0.2836

0.5795
-0.2324

0.5%9
-0.1879

0.5Y58
-0.1486

0.24

1.000
-1.6I.8

0.8881
-1.212

0.8076
-0.9594

0.7458
-0.7832

0.6966
-o.65I2

0.6%2
-0.5473

0.6221
-0.4627

0.5928
-0.3921

0.5$573
-0.331.9

0054J$9
-0.2797

0.5249
-0.2339

0.28

1.000
-2. Oyl

o.8812
-1.498

0.7979
-1.183

0.7351
-0.$M?6

0.6853
-0.8102

0.6445
-0.6871

0.6103
-0.978

0. 58rL
-0.5053

0.5557
-0.4354

0.5334
-0.3752

0.5134
-0.3225

sk2?-

1.000
-2.485

0.8745
-l.&%

0.7885
-1.420

0.7244
-1.163

0.6742
-0.9767

o.633a
-0.8327

0.5991
-0.7179

0.%99
-0.6229

0.5446
-0.5428

0.%24
-o.k741

0.5026
-0.4142

%2!_
1.000
-2.985

0.867’7
-2.I.34

0.7793
-1.670

0.7141
-1.367

0.6634
-1.1%

0.6223
-0.9852

0.5882
-0.8528

0.5592
-0.7446

0.>340
-0.6535

0.51J9
-0.5761

0.4923
-O.*

0.40

-;:%

0.8608
-2.481

0.7702
-1.932

0.7041
-1.%

0.6530
-1.330

0.611.8
-1.142

0.5777
-0.$P28

0.54’87
-0.8702

0.5237
-0.7681

0.5018
-o.681.1

0.4824
-0.6058

and the depositionper particle is E e-sAa, where

E is the expectationloss (for a full weight parti-

cle).

For

algss~,

(s- Sl)
dne=dne- @s, (61)

- ‘1
and the energy deposited is E e .

Let the variance per particle AEp, be the

energy deposited times a factor a. The total vari-

ance Is taken as

14



(AE)2= Tpar ides (-)2
The upper limit for cow ia given by

.

‘1

+
~ ~s ~2E2 e-2s

o
(AS)2

o

w

1 (s - Sl)
+ nods e- Aa CZ%2 e-2s1

‘1

[

. ~2E2 n ~ As
-2s -2sl

o 1
~(1-e l)+e . (62)

E is proportionalto the weight of the particle:

E = A/no. The stochasticdeposition is usually

one optical depth beyond s .1 The work required

(computer time’ is W = Bno (1 + SI).

Tnen

-2s1
+e 1. (63)

The minimum value depends upon As. For a fairly

thin sone, As . 0.01, the minimum value occurs at

‘1 = 3.’7,where

-2s -2s1
(l+sl)[~(l-e l)+e ] = 0.026

as compared to 1 for s = O.
1

For the same variance

about l/kO as much work is required.

v. THE CROSS SECTION INTEGRATED OVER SOLID ANGLE

Other cross sectionsof interest are

~= /
d COSePn (COSQ)a= . (64)

These can be reduced to one-dimensionalintegrals

by invertingthe order of integrationin Eq. (18).

The integrationover cosg is elementary. Here it

is done for n . 0.

C- = (72 + ya- l-ala2)/kko . (65)

The integral over y can then be divided into two

regions, A and B, depending upon the lower limit

Of COW (Fig. 4). In A the lower limit ia given

by

c- = (72 +7a- 1 +a1a2)Ako . (66)

The range of A is

yl=[l-min(o,a)] s7si72,

where

‘2 = 0.5 ( -a+~J~) . (67)

A exists only for cases (a), (b), and (c) of Fig.

4. B covers 725 7<00, and the lower limit of

Cos e is -1.

The indefinite integral of the brackets,

inEq. (18) witn respect to dcoa9 is
{} ‘

J[ _+_&] +=[k27&w2]‘2 ‘Oc-—
c- f32

-T[c-
k2y + ka

+2
~ kko q 1

-[F+21 ~ ‘og w+ =-)

[

kko+l
+

1
—+2 —

;2
( ))

log ~+ ~- , (68)
g2
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where

61=(7 +ko)2-1

and

f32=(7- k)2 -1.

If g2 < 0, A[ . . . 1 ia replaced by
%?

-— -%+~c-l .
/-2’”

Where

C- = (72 + ya - l~a1a2)/fio ,

the identity of Eq. (25) maY be used to give

(69)

For the lower sign, the right-hand side ofEq. (69)

is multiplied by -1 for negative a.

Let

a< = min (al, ct2j ,

k<= min (k, ko) ,

%= -(al’ a2) ‘

\=mex (k, ko) ,

end

+ko>k

@~
.

-ko<k . (70)

Then

~“*

where

1
7--

dy e Tf,

{ [

(Y+ko)
fA.aY< -*+(1+ +-) k< gl

o 0

.J-Z_#l 11
[

+2+

+ log

[
-2+

+ log

and

l+kko1[—.
C31

i; “g

(&a+koal-ka2@ @@oal + kaJ )]

1 [(
2

l+kko +ya - 1 + ala2
—.

% & ‘“g’ \al )

fB=& (a> -a<)
o

{
s (k<a>-k> a<)+(1++) 7

0 g2

y+ko
-—(k>a>-k <a<)

131 1

1

y+ko
+2k2+2(l+kko) ti— —

I

~ +~+-] ~g~hg(72~7a~-al%)

+21.0g @la+ a(7+ko)

( @ @@oal + %) )1
, ‘F+al*Fg(72+7~-a,a2)

.

.

16



.,

(
a~a(y-k~

+ 2 log )1a&j@(kQ1+koa2]“
where the averaging is now over botn the electron

(71) distribution and the angle of scatter.

For k = ko,

When g2 < 0, in fA the quantity~[. ..lis

replaced by &-

[

2f12 a2

ksi’i’ ‘2
(72-1-

1
yk) , k<ko,

.

or by

[[

.2~al p

1]
~ SiII-l ko, al - k. (7 + a) , k> kd

In f , ‘[. ..lgoesto
‘~

{[

’32 2
-& sili’ 1+<(7 -1+7. :ya2

1

I
- sin-l (1 + 2 g2) .

For an idea of the approximatesize of&, the

first term in the brackets

tegrated alOne. This is

72

301
2

mr

K=
{J

k: :(+) ,,2”<

_-.
of Eq. (18) may be in-

7
e-T

dy

09

J

7-—
+ dye T[~-

/
a>+a<l . (72)

72

Then

&J
1 [1+0.5kko (C-(C-)’) - 0.5 (sin2e’)1 ,

%==

(73)

72

aal nr2

u

--
0 ;

XT=
2a2e dy

ko2 TK2(#
1

( 14)

For T << 72 - 1, sndko small(ao 72 - lmko 2/2),

aal nro22

x---yT “ (75)

o

This ia just that part of the Klein-Nishinaformula

from which this term is taken.

For T>> ko2/2, the first integral is negli-

gible and

72

2 ro2&

$“*” ‘2”2 “

(76)

2/2 is a transitionpoint be-The temperatureT s k.

tween what my be called a zero-temperatureregicn

and a finite-temperatureregion. In the first re-

gion, the K.1.ein-Nishinaformula is a good approxi-

mation and there is a strong correlationbetween

final energy and scatteringangle. The quantity

(Ik - kol~ k 2. In the finite-temperatu.reregion
o

there is little correlationbetween final energy
112

and scatteringangle, and (\k - kol) akoTfi . For

k. = 1 keV, the transition

for example, about 1 eV.

temperature,ko<~2 is,
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